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Upward ‘ falling ’ jets and surface tension 

By JOSEPH B. KELLER and MORTIMER L. WEITZ 
Institute of Mathematical Sciences, New York University 

(Received 1 November 1956) 

According to the simple hydraulic theory of jets, each particle of a jet 
moves independently along a parabolic trajectory. Therefore a steady jet 
has a parabolic shape. We wish to consider how these results are modified 
by surface tension. For simplicity we will consider a two-dimensional jet 
of incompressible fluid. 

The hydraulic theory is based upon the two assumptions, that the 
velocity is constant on each cross-section, and that the pressure is constant 
throughout the jet. Then the jet can be completely described in terms of 
its centre line y(x,  t ) ,  its vertical width h(x, t ) ,  its horizontal velocity u(x, t )  
and its vertical velocity v(x, t ) .  These four functions satisfy the following 
four differential equations, the first of which is a conservation of mass 
equation, the second a kinematic relation, and the last two are momentum 
equations. 

Ph, + p(uh), = 0, 

ph(~t  + UU,) = - 2 Ty, y,,( 1 +yZ)-”’”, 
p h ( ~ t  + UU,) = 2Tyz,( 1 +Y;)-~’’” - pgh. 

( 1 )  
yt++yz = ZJ, (2) 

(3) 
(4) 

In these equations p denotes the density of the liquid, T denotes the tension 
of the surface, and g denotes the acceleration of gravity. 

Let us seek a steady (i.e. time-independent) solution of these equations. 
From ( 1 )  we obtain uh = m, where m is the constant flux of mass through 
any cross-section of the jkt. Equation (2) yields ZJ = uy,, while (3) and (4) 
become 

Upon integrating ( 5 )  and denoting u(0) by q,, we obtain 

(7) 

(8) 

u(x) = u,+ ; 2T [( 1 +&1’2-(1 +y30))-1’2]. 

Now on using (7) to eliminate u(x) from (6), we have 

Here the constants a and /I are defined by 
[ 1 + a( 1 + 3 ~ 3 - ~ ’ ~ ] y ~ ,  = - B. 

2T 
a =  

muo- 2T(1 +yz(0))-1/2’ 
P.M* 

(9) 

0 



202 Keller and Mortimer L. Weitx Joseph B.  

8 =  
Integration of (8) yields 

(10) gm2 
[muo - 2T(1 +yz(0))-1/2]2 ‘ 

y, + u sinh-ly, = - 8x +y,(O) + u sinh-ly,(O). ( 1 1 )  

The last equation is a first order equation for y(x)  involving three 
parameters. T o  reduce the number of parameters we set y,(O) = 0, since 
the resulting curve will apply to any initial slope if read from that slope on. 
Next, we introduce the new variables 8x = 4 and fly = 7. In  terms of 
these variables (1 1) becomes 

T~ + a sinh-l qE = - 5. (12) 

This equation involves only the one parameter u = 2T/(muo-2T) and is 
therefore convenient for numerical integration. 

In the 
figure graphs of the solution of the above equation are shown for u = 0, 1 
and - 2. When the f ,  r] variables are used, the curves with a > 0 lie above 
the parabola obtained for u = 0. On the other hand, when the x, y variables 
are used these curves lie below the parabola. Thus, as one expects, in the 
physical plane the jets with surface tension lie below the parabola, provided 
u > 0, or muo/2T > 1. 

However, when u < 0, or muo/2T < 1, the jet rises instead of falling, 
even though it is initially projected horizontally (see the figure). It continues 
rising until all the initial kinetic energy is converted into potential and 
surface energy. Then the curvature and thickness become infinite and 
the theory fails. Presumably it would spill down before this point is 
reached. This phenomenon of a rising jet can occur only in a slow thin 
jet, since the above inequality requires that the kinetic energy *phiit must 
be less than the surface energy T.  In  very crude experiments we have been 
unable to observe this behaviour. We believe this is because the rising 
flow is unstable at the necessarily low speed. Instead, a ‘teapot-like’ 
flow, in which the liquid runs along the lower surface of the spout, seems to 
be stable. 

In  order to understand the surprising phenomenon of a jet ‘falling’ 
upward, let us consider the simple problem of a falling body of mass M .  
If y ( t )  denotes the height of the body measured positive upwards, then the 
equation of motion is My,, = - Mg. From this equation we see that ytt 
is negative. If we want the body to fall faster, we may push it down with 
a force k2ytt proportional to the acceleration. Then the equation of motion 
becomes 

and we now have 

Thus as k2 increases from zero, the acceleration becomes more negative, 
until k2 = M ,  when there is no solution. For k2 > M ,  ytt is positive so the 
body falls upward. We may describe this example by saying that negative 

When u = 0, (12) yields the expected parabola 7 = -4p. 

My,, = - Mg + k2y,,, 

ytt = - Mg/(M-  P). 
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inertial mass of amount - k2 has been added to the body. As more negative 
inertial mass is added, the body’s downward acceleration continually 
increases until the total inertial mass M-Ka becomes negative. Then the 
body falls upward. 
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Steady jets falling or rising under the influences of gravity and surface tension. 

The parabola 01 = 0 occurs when surface tension is absent. For moderate 
surface tension (a >O) a curve such as that shown for a = 1 occurs. In 
terms of the x,y variables this curve lies below the parabola. However, 
for larger surface tension (a < 0) a curve like that shown for 01 = -2 results. 
This curve represents an upward falling jet. The curves for a = 1 and 
a = -2 were obtained by numerical integration of equation (12). 

This example is pertinent to the jet problem. T o  see this, note that 
near the nozzle the x-coordinate of a particle is approximately u,t. The 
surface tension force is approximately 2Ty,, = 2Tytl/u;. Thus the above 
discussion applies to a particle of the jet with k2 = 2T/u:. We see that 
surface tension has the effect of adding a negative inertial mass to each 
particle without changing its gravitational mass. 

These results appeared in “Thin unsteady heavy jets”, by J. B. Keller 
and M. L. Weitz, Report IMM-NYU 186, Institute of Mathematical 
Sciences, New York University, 19 December 1952. They were also 
presented at the Ninth International Congress for Applied Mechanics, 
Brussels, September 1956. 


